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Abstract. A selective survey is given of convergence results for sequences of Padé
approximants. Various approaches for dealing with the convergence problems due to
“defects” are discussed. Attention is drawn to the close relationship between analyt-
icity properties of a function and the “smoothness” of its Taylor series coeflicients.
A new theorem on the convergence of horizontal sequences of Padé approximants to
functions in the Baker-Gammel-Wills conjecture function class is presented.

Since the beginning of the age of computers, which made the quick
and easy computation of Padé approximants [1] possible, people have
noticed that while they generally converge in an excellent manner, these
approximants are bedeviled by “defects.” By a defect I mean a spurious
pole and zero very close together. An early cited example [2] is for the

function,
2
£(2) /z <siny cosy)Zd
z) = — y
0 y? y?

where the [5/5] Padé approximant has the poles and zeros

Root of the numerator = 2.8852000
Root of the denominator = 2.8851989

The first thought was that these were the same, except for numerical
error, however not so!!!

There are three approaches to this problem. The first is analytic
proof for special classes of functions. For example (i) series of Stieltjes,
and (ii) Polya frequency series. Also there are a number of special
cases where the exact Padé approximants can be worked out, e.g., the
continued fraction of Gauss. The form of the functions in those classes
is:

0 fz)= /0 T e dg(u) > 0,

14 uz
11+ a2

(ii) f(z) = age”’zM where ag > 0,
]:1(1 - Bjz)
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7,aja/8j > 0, Z(a] +6j) < oo.
J

In these cases the spurious poles are under control. That is to say they
don’t continually intrude into regions of convergence. The convergence
in these cases is well understood.

The second approach is to look for a type of convergence other than
pointwise. As on the previous page, it was noted numerically that the
region of disruption of these defects was always small.

Here and there, in order to meet the needs of the presentation, I have
reformulated, condensed, extracted, and/or generalized the theorems,
etc., quoted. I have however, I think, retained their essence.

An idea towards this approach is Cartan’s lemma [3]. The point is
to bound the denominator of the Padé approximant away from zero in
most of the complex plane.

CartaN’s LEmmaA. If P(z) = [[\_;(z — z,), then for any H > 0,

PO (a)

holds outside at most n circles whose radii satisty,

n

S e < (2H)™

=1

If we choose o = 2 then this lemma gives a result very much like the
ordinary measure of the set where the polynomial is less that (H/+/e)".
For general o this measure of set size is the Hausdorff measure of
dimension a. For o &~ 0 the Hausdorff measure is similar to, but distinct
from the measure called capacity.

DEFINITION OF CAPACITY. Let T,,(z) be the Tschebycheff polynomial
for a compact set £. That is to say the unique polynomial for which

M, = inf suplp.(2)l,
Pn(2)EPn ze€

where P, is the set of all nth order monic polynomials. Then the
capacity of £ is,
cap(€) = lim [M,,(E)]M™.

The study of convergence in measure was pioneered by Nuttall [4]

in 1970. He proved
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NutTaLL’'s THEOREM. Let f(z) be analytic at the origin and also in the
circle |z| < R except for m poles, counting multiplicity. (He makes no
further assumptions on f outside the closed circle of radius R.) Consider
a sequence Ly /My] of Padé approximants to f(z) with My > m, and
Ly/Mj — oo as k — oo (M # 0). Let € and § be arbitrarily small
positive, given numbers. Then kg exists such that

|f(2) — [Lx/My]| <,

for all k > ko and for all |z| < R except for z € £, where £ is a set of
points in the z-plane of measure less the 6.

POMERENKE’S THEOREM, [5]. Let f(z) be regular in |z| < R for all
0 < R < oo except for a finite number (counting multiplicity) of isolated
poles v(R) and essential singularities u(R). Then, given any €, 6 > 0
and 1 > X > 0, there exists an My such that for all M > My, \™'M >
L> )M,

() = [L/M]| < e,

for all z in a given, closed, bounded region R of the complex plane
except for a set of points EL/M] of measure less than §.

The next big step in this approach was taken by Stahl (1987-97) [6].
First of all he answered definitively the question of where do the cuts
go, when a multivalued function is approximated. The answer is given

by

StaHL'S MINIMAL SET THEOREM. Let f(z) be a given functional el-
ement, analytic in the neighborhood of zero. There exists a unique
compact set ky € C(w), w = 1/z such that

(i) Do = C\ kg is the domain in which f(z) has a single-valued analytic
continuation,

(ii) with respect to the w-plane, cap(rkg) = inf, cap(k), where the
infimum extends over all compact sets k C C(w) satisfying (i), and

(iii) ko C k for all compact sets k C C(w) satisfying (i) and (ii).

The notations C(w) and C(w) refer to the complex w-plane and the
complex w-plane including the point at infinite respectively.

The set kg is called the minimal set (for single-valued analytic con-
tinuation of f(z)) and the domain Dy is called the extremal domain.
This result for the unique minimal set provides the precise description
of the set that Nuttall [7] conjectured should exist and should be the
cut-set for the given function.
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In addition Stahl has proven convergence in capacity. To state his
theorem, we define,

Ff(z) = eXp{_gDo (Z,O)}, z € Dy,

where gp,(z,0) is the Green’s function of the domain Dy with a loga-
rithmic singularity at z = 0.

STAHL’S CONVERGENCE IN CAPACITY THEOREM. Let f(z) be given by a
functional element at z = 0 and let the set £ C C(w), (w = 1/z) of all
the singularities of f(z) be of capacity cap(€) = 0 with respect to the
w-plane. Then any close-to-diagonal sequence of Padé approximants
{[L/M](z)} to the function f(z) converges in capacity to f(z) in the
extremal domain Dg. More precisely: For any compact set V C Dg, and
€ > 0, we have (with respect to the w-plane)
lim cap{z € V||f(2) = [L/M](2)| > [F(2) + €] "}
L+M— oo
=0,

and
lim cap{z € V||f(2) - [L/M)(2)] < [F(2) — ]=+M)

L+M— o0
=0

An infrequently mentioned theorem shows that if a natural bound-
ary is not too thick, the Padé approximants can analytically (in the
sense of Borel and Carleman) continue through it and converge beyond
the boundary [8]:

GAMMEL AND NUTTALL'S THEOREM. Let f(z) be quasi-analytic, i.e.,
= A
. n _n1-|—e
f(z)_nz:ll_zana |An|<Ce ’ €e>0

and let |ay,| = 1. Then the sequence of [N +J/N] Padé approximants to
f(z) converges in measure to f, N — oo in any closed bounded region
of the complex plane. J is any N independent integer. (By sequence is
meant all those which exist. There are always an infinite number.)

In the first approach, there are a number of special cases which can
be analyzed analytically. The location of cuts and rates of convergence
are known. There are in these cases no defects. In the second approach
a rather wide class of functions is analyzed. There are explicit methods
to determine the location of the cuts, and the rate of convergence.
The class is not universal however, as it does not include functions
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with natural boundaries nor asymptotic series. In the results for this
approach defects are the norm. From a practical point of view, one
would like to be assured that there are no defects, so one could take a
given approximant and evaluate it anywhere in the cut-plane and get
an accurate result.

The third approach is that of pointwise convergence of a subse-
quence. Just as in sorting a barrel of apples, the idea is simply to
throw away the bad ones. What remains to show is basically that there
will be an infinite number of good approximants left. So far, progress,
though considerable is not as great as in the second approach. To get
some orientation to the problem, it is instructive first to consider some
counter-examples.

PERRON’s EXAMPLE [9]. Let

flz)= Z cnz".
n=0

Select a sequence of points z,, dense in the complex plane. The values
zp = 0 or co are not used for any n. On the basis of this sequence,

define

C3n = Zn/(?)n + 2)' .
<
Can+1 = Can+2 = 1/(3n + 2)! if fen] < 1,

63n263n+1=1/(3n+2)! o
1.
Cant2 = 2,1 /(3n + 2)! if 2a] >
By comparison with the exponential series, as |cj| < 1/;! for all j, the
function f(z) is an entire function, (has an infinite radius of conver-
gence). But as either ¢3,,/¢3,+1 = 2z, OF €334+1/C3n+2 = 2n, as the |z,|

is greater or less than unity, and as

L—-1

L
. crz
[L/1] =) ez’ + PR
]:0 cL

we see that either the [3n/1] or [3n+1/1] has a pole at z = z,,. Therefore
the entire sequence has poles (defects) dense in the complex plane;
however, the [3n 4 2/1] sequence does converge.

GAMMEL-WALLIN EXAMPLE [10]. Let n1 = 1, npy 1 = 2np + 1 (= 28 — 1).
Let the series coefficients ¢, now be chosen as ¢, = a2z, " when nj <
n < np41. Again choose a sequence of 2z # 0, co dense in the complex
plane and pick

min(|z¢["*, |2 *")

(2ng)!

A =
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Again we have the property that |¢,| < 1/n!, and so again f(z) is an
entire function. We may write, by partially summing up the series,

e @ EM
f(z)—1+;ak 1_(z) .

2z
Inspection shows that
[n/1] = [ne +1/1] = - -+ = [2ny, — 1/1],

and therefore by Padé’s block theorem, there is an n x n block starting
at the [ny/1]. Hence [ny /1] = [n}/n] has a pole (defect) at z;. Thus the
whole [n/n] sequence (and in particular the [2* —1/2% —1] subsequence)
diverges on an everywhere dense subset of the complex plane! (Note
that there does exist another diagonal subsequence which converges
everywhere.)
BUSLAEV, GONCAR, AND SUETIN’S EXAMPLE [11]. Consider the function,
3

flz) = 711%—_\22,2 =14+ V2z+2°2+ V22 + .
This function is regular in |z| < 1 and also on the unit circle, except at
the three cube roots of unity. Never-the-less, every approximant of the
type [L/2] has a pole (defect) in |z| < 1. Note that the [1/3] is exact.
LUBINSKY AND SAFF’s EXAMPLE [12]. Consider the partial theta function
hy(2) with ¢ = ¥ where §/(27) is irrational.

hq(z) — Zqi(i—l)/Zzi

This function is clearly regular for |z| < 1 for our choice of ¢ Further-
more, there is a natural boundary at |z| = 1. They show that the Padé
approximants [L/M] with M fixed, converge in a disk |z| < Ay < 1.
However, for M > 2 every approximant has a pole (defect) with |z| < 1
and the boundary of Ay, contains limit points of poles of the row
sequence. Note that they also show a proper subsequence of the [M/M]
converges locally uniformly in all of |z| < 1.

If 6/(27) = p/q is rational, then since [¢(i — 1)/2] mod, is periodic
with finite period v(q) < 2q, the coefficients of hy(z) are also periodic.

Thus P ()
_ g\
he(2) = 1 o

and so the [v — 1/v] is exact. In light of this result, it seems likely that
in the irrational case, the natural boundary is a permeable one and
that the Padé approximants converge in measure beyond it.

)
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These counter examples demonstrate clearly that convergence of
the whole sequences is not to be expected in general, so for the third
approach we focus on subsequence convergence. Here follow some of
the positive results that have been obtained. They have restrictions of
various types. Some are restrictions on the analytic properties of the
functions, some on the behavior of the series coefficients, some on the
behavior of the approximants, and some are of mixed type. First we
report on theorems on the convergence of general types of sequences of
Padé approximants. The most primitive such theorem is due to Baker

[13].

BoUNDEDNESs THEOREM. Let Pp(z) be any sequence of [L/M] Padé
approximants to a formal power series where L + M — oo with k. If
| Pp(z)| is uniformly bounded in any closed, simply-connected domain
D1 containing the origin as an interior point and |Py(z)| ™! is likewise in
Dy, then the Py(z) converge to a meromorphic function in the interior
of Dy U Ds.

This theorem can be stated in a considerably improved manner in
terms of the Riemann sphere. Consider a sphere with the unit circle
of the complex plane as its equator. Run a line from its north pole to
any point on the complex plane. The single intercept of this line with
the sphere is Riemann’s spherical representation of the complex plane.
The north pole itself is the point at infinity. Let the distance between
any two points be the length of the cord between them. This distance
is always less than 2 clearly. We need the derivative, in terms of this
cordal distant, of f(z). It is,

Df _ 2|/'(2)]

Dz~ 1+]f(2)|*
Combining some results, we have [14],

BAKER AND GRAVES-MORRIS’S THEOREM. If Pj(z) is any sequence of
Padé approximants for which L + M — oo with k, then it is necessary
and sufficient that D Py(z)/Dz be uniformly bounded in R, a closed
region containing the origin as an interior point, in order that {Py(z)}
converge in R to a limit on the sphere. That limit is a meromorphic
function.

What if there are no spare poles in the unit disk?

BEARDON’S DISK THEOREM [15]. Let f(z) be analytic in |z| < R except
for m nonzero poles there, and let £ be any closed set of |z| < R on
which f(z) is analytic. For each § > 0 there exist a k (k > 1 and
depends only on f, £, and &) such that if [L/M] is any sequence of
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Padé approximants to f(z) whose poles are at least § from £ and for
which L > kM > m, then [L/M] converges uniformly to f(z) on & as
L+ M — oco.

BAKER’S DISK THEOREM [16]. Let f(z) be given, regular and non-zero
at z = 0, and meromorphic in |z| < S with | zeros and m poles. Let
{Px(z)} be any sequence of Padé approximants such that L + M — oo
with k, and such that there are exactly | zeros and m poles of {Py(z)}
in |z| < S, then {Py(z)} converges to f(z) in {z]||z| < S\ {poles of
f(2)1}

The previous theorem is a corollary of the following more general
theorem [16].

BAKER's THEOREM. Let f(z) be a given function with | zeros and m
poles (counting multiplicity ), meromorphic in an open, simply-connected
region R of the complex plane containing the origin. Let {Py(z)} be a
sequence of [L/M] Padé approximants to f(z), L+ M — oo with k,
such that the sum of the number of poles and zeros ni(d) of Py(z) in
R and more distant than any d > 0 from the boundary of R satisfies,

lim [M] =0.

k—oo | Ly, + Mj,
Further, let T be an arbitrary closed set interior to R. (Select d so that
none of T is closer to the boundary than d.) Let there be exactly Iy
zeros and mj poles (counting multiplicity) of f(z) in the interior of T
and an equal number of poles and zeros of {P;.(z)} in T and no other
limit point of poles or zeros in T . Then the sequence {Py(z)} converges
in compact subsets of {T \ {poles of f(z)}} to f(z). The conditions
on {Py(z)} are also necessary, provided T contains the origin as an
interior point and contains no limit point of external poles or zeros.

Another theorem, proven earlier can also be treated as a corollary
of the previous theorem. It is [17]:

WaLsH’s THEOREM. Let A be a Jordan region of the extended plane
containing the origin, whose boundary is denoted by I'. Let w = ¢(z),
map A conformally and one-to-one onto |w| < 1 and let T, denote
generically the locus |¢(z)| = m, 0 < m < 1, in A. Let f(z) be ana-
Iytic at the origin and on I', and suppose that the Padé approximants
{Py(z)}, where L + M — oo with k, are bounded on T':

|f(z) = P(2)|] <M, z on T
Suppose Py(z) has precisely N}, polesin A, and Ny, /(L+ M) — 0. Then

we have

lim sup {max [D(f(2), Px(z))], z on T}l/(L—l—M)

k— oo
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< max [¢(z)|, z on T,

where D(z,y) is the cordal distance on the sphere, T' is an arbitrary,
closed set in A containing only one pole of Py(z) for each pole of f(z)
in the interior of T', and no other limit point of poles.

There is another group of theorems where the assumptions do not
involve pole location, but instead have more restrictive assumptions on
the function class considered.

BAKER AND GAMMEL’Ss THEOREM[18, 19]. Let f(z) be meromorphic in
the whole complex plane. Then there exists an infinite subsequence of
[N+j/N] Padé approximants which converge to f(z) at any point of the
complex plane not a pole of f(z), provided, that if a,, are the locations
of the poles of f(z) (|an| < |an+1|) that j goes to infinity sufficiently
rapidly so that maxi<,<n{b;|an/an+1’} = 0 as N — oo. We further
assume that if the b,, are the residues that ) |b,/ay| converges.

We define, _ _
¢i=A"'g, ¢ =(AN""h
where AT is the Hermitian conjugate of the operator A. We also define
the N x N matrix,

Rij = (¢}, ;) = (A, A 723) = wiyj o

If det |R; j| # 0, we can define the projection operator

N
Py =Y ¢i(R; )¢}
ij=1
Py is projection operator on the space Sy spanned by the ¢;. As
this projection operator may however be oblique (|| Py [|> 1), it is
convenient to define in addition the corresponding orthogonal projec-
tion operator, Py . Correspondingly we define the orthogonal projection
operator Pl which projects onto the space S}, which is spanned by the
qS; It is now easy to show that, in terms of the solution of

fn =G+ \PyAPyfy
the [N — 1/N] Padé approximant to (i_;, f) where
F=G+ MG+ A%+,

is just (};,fN) If§ = h and A is Hermitian, then from Fredholm

theory we know that the solution (iZ, j_" ) is a meromorphic function in
the complex A-plane.
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BAKER’S FUNCTIONAL EQUATION THEOREM [20]. Let f(z) be defined as
above in terms of A, §, then (i) if A is of trace class, [i.e., AT Av; =
2, || A |li= Y52, ;] then the numerator and the denominator of
the [M /M| Padé approximants converge separately to entire functions
throughout the complex A-plane and their ratio converges strongly to
the f(\). (ii) If A is a compact operator and

liminf | PvAPyAEN ||=0
N—oo

where €x is the unit vector in Sy but not in Sy_1, then either vafN
converges strongly to the solution of the functional equation, with the
exception of its singular points and at most one other point, or there
exist two infinite subsequences for one or the other or which P} fN
converges strongly (except at singular points of the functional equation)
for all finite \. Since h € Sy, these results imply the corresponding
convergence of the [N — 1/N| Padé approximants.

Next we report a line of work begun perhaps by Dumas [21].

DuMAs THEOREM. Let

F(2) = /(2= d1)(z — d2) (2 — d3)(z — dy)

where the d; are distinct. Then, there exists a subsequence of the [M /M ]
Padé approximants which converge point by point in the domain give
by Stahl’s minimal set theorem.

Of course Dumas used other language as he did not have Stahl’s
result at that time, but this is a correct statement of some of his results.
Nuttall [22] has extended these results. In Dumas theorem, the branch
cuts consist of two arc each of which joins a pair of branch points.
There can be at most one spurious pole. Nuttall has generalized this
theorem to:

NUTTALL’'S BRANCH-POINT THEOREM. Let

21 -
f(z) = /S dt{ﬂu—da} ()t —z) !
=1

where the d; are distinct and a particular choice of p(t). Then outside
a cut-set which connects (in pairs) the branch-points and has the min-
imum capacity in the 1/z-plane, there is a subsequence of the [M /M]
Padé approximants which converges point by point to f(z).

D=

In this case, the description of the cut-set agrees with Stahl’s results.
Also here there can be at most (I — 1) spurious poles. The contour of
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integration S is appropriately chosen. Stahl [23] has reported proving
the same results for a subclass of the hyper-elliptic functions.

Lubinsky [24] has proven a number of theorems which depend on
smoothness properties of the coefficients of the series expansion. I have
consolidated them into a single theorem.

LUBINSKY’S THEOREM. Let f(z) = 3 77, a;z’ be entire. (i) If infinitely
many aj # 0, and

linrls.up|aL|1/L2 =p< 5,
L—oo 3

then there exists an infinite sequence S of positive integers such that

lim [L/Mg)(z) = f(2)

LeS

uniformly in compact subsets of the finite complex plane for all non-
negative integer sequences { M }72 . (ii) If

laj—1aj41/a7] < p%, §=1,2,3,...,

23 0 =1, p~04559...,
j=1

then for any sequence of non-negative integers {Mr,}72 ¢, the [L/Mp](z)
converge uniformly in compact subsets of the finite complex plane to
f(z) (iii)If a;j # 0, j large enough, and for some complex number
g, lg| <1 ,

1. . . S =

]gf)lo aj-1aj+1/aj =q,

then for any sequence of Padé approximants [Ly/Mj]| where Ly — oo
as k — oo converges locally uniformly in the finite complex plane. In
each case the diagonal sequence is included.

Finally there is the Baker-Gammel-Wills [2] (or Padé) conjecture.
There are by now many inequivalent variants of this conjecture. I
will stick with the original version. An important point is the implied
existence of a singularity at z = +1.

Papk ConsecTURE. If P(z) is a power series representing a function
which is regular for |z| < 1, except for m poles within this circle and
except for z = +1, at which point the function is assumed continuous
when only points |z| < 1 are considered, then at least a subsequence of
the [N/N|] Padé approximants converge uniformly to the function (as
N tends to infinity) in the domain formed by removing the interiors of
small circles with centers at these poles.
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I would remark that the reason for the continuity condition at the
boundary singularity is illustrated by the following two examples. Let

a(z)=(1—e %)/, b(z)=(1—¢e 7).
Then,

_1\N
IN/NLoo) = 22 0,

N
[N/Nlp(o0) =1 = (-1)¥ 2 > 1

In case a(z) the continuity condition is satisfied and the limit exists.
Here a majority of directions have a single limit. In case b(z) the
continuity condition fails and the whole sequence oscillates indefinitely
about the limit found as z — oo along the real axis.

Now we turn to results on more or less horizontal (or vertical by
duality) sequences. The first and best known is

DE MONTEsSsUs’s THEOREM [25]. Let f(z) be a function which is mero-
morphic in the disk with |z| < R, with precisely m poles at distinct
points, z1,29,...,2;, With

0<|z1| < z2| < ... < |zm| < R.

Let the pole at z;, have multiplicity uy, and let the total multiplicity
be > it pr = M precisely. Then

£(z) = Jim [L/M),

uniformly on any compact subset of D,,, = {z||z| < R,z # z,k =
1,...,m}.

BEARDON’S ROW THEOREM [26]. Let f(z) be analytic in |z| < R. Then
an infinite subsequence of the [L/1] Padé approximants converges to

f(z) uniformly in |z| < R.

BUSLAEV, GONCAR, AND SUETIN’S THEOREM [11]. Let f(z) be holomor-
phic at z = 0 and be given by its power series expansion. Let Rys be its
radius of meromorphy with no more than M poles. Then, there exists
at least a subsequence of [L/M] which converges uniformly as L — oo
on compact subsets of the disk |z| < capr Ry which do not contain poles
of f. cyr is a positive constant which depends only on M. If Ry = oo
then we get convergence in the whole complex plane excluding the poles

of f(z).
The counter-example of Lubinsky and Saff [12] shows that ¢y <
0.58...,
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c17 < 0.24... and there are M’s where the ¢jr < 3 — 2v/2. We will
see below that the behavior on the circle of M-meromorphy makes a
big difference in what can be proven!

LUBINSKY’S ROW THEOREM [27]. Let f(z) = Y a,2z™ satisfy the
properties

liminf |ay,/ami1| =R >0, qn= am_lam+1/a72n,
m—0

im gn=gq, q#0, ¢ #1V0<j<n,

m—

or, if ¢ is a root of unity, there exists the expansion,

dm Zqzckm_k+o(m_N) m — oo.

then
lim [m/n] = /(2), || < oR,

where o is the smallest root (necessarily positive) of the Rogers-Szegé
polynomial

n

(1-g¢)(1—g" ") (1-g"t)
2% 1-q)1—-¢%)-(1-¢))

Note that if ¢ =1, then o =1 for all n.

u!.

So far as I can tell the first work on Padé approximants to “smooth”
series is due to Wilson [28]. Here is an extended version [29] of one of
his theorems.

WiLsoN’s THEOREM. If f(z) inside |z| < 1, except for n interior poles
r; with corresponding multiplicities m;, » . ,m; = M then if the
coeflicients of

B(z) = Zb 2 = f(2) H(l —z/r;)"™

satisfy the conditions for n=L-M-p+1toL+M+p
by=T""pB(L) [Z?igz a]-L(%—l)"Jr»y(n,L)(@)“‘l],
where |I'| = R and a;j(L) and y(n, L) are uniformly bounded as L — oo,
and
(2p —2)lagy—o(L) - (p—Dlau—1(L)
lim det . :
L—o0 : :
(b= Dlapa(l) - ag(D)
exists and is not zero, then in the limit as L. — oo, [L/M + u| converges
uniformly to f(z) on compact subsets of |z| < R excluding poles of f(z).
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WALLIN’S THEOREM [30]. If f(z) satisfies the conditions of Wilson’s
theorem for all p or the conditions of Lubinsky’s row theorem, then
there exists an infinite sequence of [L/M| Padé approximants which
converge uniformly on compact subsets of |z| < R excluding poles of
f(z). This sequence has the property that L; — oo and M; — oo as
1 — 00.

Looking at functions of the class of the Padé conjecture, I have
found them to have certain valuable smoothness properties by using
some century old results. In this class of functions, there is a single
non-polar singularity on the boundary of the circle of M-meromorphy.
The following new theorem will be stated for no poles in the disk, but
it can be easily extended by standard methods of proof to a specific,
finite number of poles in the disk.

BAKER’S ROW THEOREM. If P(z) is a power series representing a function
which is regular for |z| < 1, except for z = +1, at which point the
function is assumed continuous when only points |z| < 1 are considered,
then

Jim [L/m] = f(z), |o] <1\2=+1

ProoF: Since f(z) is regular on |z| =1\ z = +1 it is also finite at each
such point. If |f(1)| = oo, then the oscillation in any finite interval
including z = +1 is infinite. However as f(z) is assumed continuous at
z = +1, it must also be bounded there, and consequently bounded in
|z] <1 Thus the singularity at z = +1 is non-polar. It must be either
a branch-point or an essential singularity. By the Heine-Borel covering
theorem, we can cover the line z = ¥, § < § < 27— § of regular points
with a finite number of interiors of circles of regularity. Therefore we
can enclose this line in a circle of regular points. (It will pass just inside
the point z = +1.) By Cauchy’s theorem, we can define g(n) such that
g(n) =a,, n=0,1,2,... by the formula,

1 z)dz
g(n) = % % fin?}-l :

where the contour of integration is the aforementioned circle. From
this definition, it is clear that g(n) is regular for ®(n) > 0. It is now
convenient to compute a bound for the derivatives of g(n).

1 ]{ (nlnz)if(z)dz

gV (n) =

2mind zntl
1 .
R s f(n Inz)? exp(—nlnz)f(z)d(nlnz).
Tin
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we can treat the essential features of a bound by using the contour
z=[1+ %(1 — cos 0)]e? where —m < < w. The variable ¢ = nln z
runs from +o0o0 — i4/00 through 0 to +o00 + i4/c0. If we replace f(z) by
its bound, K, on the contour and recognize what is left in terms of «
as the standard gamma function integral, then we get

» JIK
‘gm(n)’ < L Moo

From this result we may compute by expanding g(n) about n = m
through the use of Taylor’s theorem with remainder, that

N
# = 1+j§(—1)’bjm T4+0(m N)
N
X 1+ijm_j+o(m_N)
j=1

Note that the “smoothness” of the coefficients is intimately related
to the analyticity properties. Thus, in the notation of Lubinsky’s row
theorem, we see that ¢ = 1 so that o = 1. In addition, we have just seen
that the necessary expansion property holds as the radius of regularity
about n = m is at least m. Thus the conclusions of this theorem hold
in |z| < 1 by Lubinsky’s row theorem. Since in the course of Lubinsky’s
proof [27], he also shows that the poles of the approximant converge to
unity, the numerator must converge to (1 — z)™ f(z) which is bounded
in |z| < 1. Take note that by our inequalities on the series coefficients,
by a theorem of Fatou [31], the series converges at all points on the
unit circle except z = 1. More specifically, the numerator is

where the €’s tend to zero as . — oo and the notation |L means truncate
to L terms. The series coefficients of the untruncated numerator series
obey the inequality |lp;| < C as shown above for the coefficients of f(z)
and from the assumptions of the theorem the function defined by the
untruncated numerator series is bounded on the unit disk, it follows
by a theorem of Dienes [32] that the numerator is also bounded on the
unit disk. Thus, by Vitali’s theorem [33], the approximants converge
uniformly on compact subsets of the unit disk, except the point z = +1.
If converges fails at this exceptional point, the value can be obtained
by continuity from adjacent converged points. |
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Wallin’s theorem applies to these results as well.

The method of proof employed in the proof of this theorem, could
equally well have been applied to extend Wilson’s theorem, but it seems
that the above theorem includes what could have been derived as an
extension of Wilson’s theorem in a more simple way. Never-the-less the
arguments and techniques used to include the case of a finite number
of poles in the interior of the disk for Wilson’s theorem, can be applied
to this case in a fairly straight forward manner.

The significant difference between this current theorem and the
counter examples of Buslaev, Goncar & Suetin, and Lubinsky & Saff,
is that there is exactly one singular point on the circle of meromorphy;
This singularity provides an unambiguous place to which the extra
poles can converge.

Also we know from the theorems of Leau [34] and Faber [35], and
of Wigert [36] and Faber [35] that a uniform function with an isolated
singular point corresponds to the coefficients as a function of the suffix
being regular in a half-plane and of limited growth. The converse is
true as well. These are further examples of how the “smoothness” is
related to analyticity.
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